Low Mach asymptotic-preserving scheme for the Euler-Korteweg model

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Weakly Asymptotic Preserving Low Mach Number Scheme for the Euler Equations of Gas Dynamics

We propose a low Mach number, Godunov-type finite volume scheme for the numerical solution of the compressible Euler equations of gas dynamics. The scheme combines Klein’s non-stiff/stiff decomposition of the fluxes (J. Comput. Phys. 121:213-237, 1995) with an explicit/implicit time discretization (Cordier et al., J. Comput. Phys. 231:56855704, 2012) for the split fluxes. This results in a scal...

متن کامل

Study of a New Asymptotic Preserving Scheme for the Euler System in the Low Mach Number Limit

This article deals with the discretization of the compressible Euler system for all Mach numbers regimes. For highly subsonic flows, since acoustic waves are very fast compared to the velocity of the fluid, the gas can be considered as incompressible. From the numerical point of view, when the Mach number tends to zero, the classical Godunov type schemes present two main drawbacks: they lose co...

متن کامل

Asymptotic preserving IMEX finite volume schemes for low Mach number Euler equations with gravitation

In this paper we will present and analyse a new class of the IMEX finite volume schemes for the Euler equations with a gravity source term. We will in particular concentrate on a singular limit of weakly compressible flows when the Mach number M ≪ 1. In order to efficiently resolve slow dynamics we split the whole nonlinear system in a stiff linear part governing the acoustic and gravity waves ...

متن کامل

An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit

This paper deals with the modeling of a plasma in the quasi-neutral limit using the two-fluid Euler-Poisson system. In this limit, explicit numerical schemes suffer from severe numerical constraints related to the small Debye length and large plasma frequency. Here, we propose an implicit scheme which reduces to a scheme for the quasi-neutral Euler model in the quasi-neutral limit. Such a prope...

متن کامل

Dispersive Smoothing for the Euler-Korteweg Model

The Euler–Korteweg system consists of a quasi-linear, dispersive perturbation of the Euler equations. The Cauchy problem has been studied in any dimension d ≥ 1 by Benzoni, Danchin, and Descombes, who obtained local well-posedness results when the velocity is in Hs for s > d/2 + 1. They noticed that one may expect to find some smoothing effect due to the dispersive effects, but there was no pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IMA Journal of Numerical Analysis

سال: 2014

ISSN: 0272-4979,1464-3642

DOI: 10.1093/imanum/dru022